Popular

Zebrafish in toxicity testing
Innovation examples
HealthToxicology

Zebrafish in toxicity testing

Zebrafish are increasingly recognised as a useful model for toxicity testing of chemical substances. Testing strategies are becoming more based on mechanisms of toxicity structured in adverse outcome pathways describing the chain of events leading to toxicity or disease. Using a battery of dedicated in vitro and in silico assays, insight can be gained in how exposure leads to disease. For certain diseases it is known that toxicity relies on the interaction between different organs and cell types, which requires research on whole organisms in addition to simple in vitro models. The zebrafish is considered a valuable whole organism model in a mechanism-based testing strategy. At RIVM, the zebrafish embryo model is used for testing the effect of chemical substances on several adverse outcomes and diseases. For more information see: https://ehp.niehs.nih.gov/doi/10.1289/EHP9888; https://doi.org/10.3390/ijerph18136717; www.linkedin.com/in/harm-heusinkveld
03:013 years ago
AI agents for safer science: How AI is Changing Chemical Risk Assessment
Innovation examples
HealthToxicologyIn silico

AI agents for safer science: How AI is Changing Chemical Risk Assessment

This video introduces a novel approach to chemical safety, where intelligent digital agents guided by large language models support scientists in making faster, more transparent decisions. By automating complex workflows and integrating tools like the OECD QSAR Toolbox, these agentic systems help prioritise research, reduce reliance on animal testing, and pave the way for safer, more sustainable innovation.
02:563 months ago
Avatar Zoo - teaching animal anatomy using virtual reality
Innovation examples
EducationInnovation

Avatar Zoo - teaching animal anatomy using virtual reality

Animals are essential to train the next generation of scientists understand diseases and develop treatments for humans as well as animals. Therefore, animals are used for educational purposes. Technologies such as Virtual Reality and Augmented Reality can be employed to reduce the number of animals in the future. Prof. Dr. Daniela Salvatori is working on the development of 'Avatar Zoo' together with UMCU and IT. Live animals are replaced by holographic 3D in this flexible platform. With these holograms one is able to study the anatomical, physiological and pathological systems and processes of all kinds of animals. Avatar Zoo won the Venture Challenge 2021 for the development of virtual reality models that can be used for anatomy classes and practical training.
02:404 years ago
SMART OoC platform: a standardized modular approach
Projects and initiatives
In vitroOrgan-on-Chip

SMART OoC platform: a standardized modular approach

The SMART Organ-on-Chip project aims to bring Organ-on-Chip technology to the next level, out of the pioneering labs to industrial applications. NWO awarded 4.8 million euro to a large and diverse consortium of universities, companies, research institutes and foundations, brought together by hDMT (Dutch Organ-on-Chip Consortium), that will together develop standardized Organ-on-Chip models. These models will be made to fit the scale and quality that pharmaceutical companies need to use them for development of novel drugs, with better science and less animal use as a result. The project will kick off in autumn 2021. More information on the project will follow in the course of 2021.
02:064 years ago
3D tumor models for CAR-T-cell therapy optimization
Meetings & conferences
HealthIn vitroAdvanced

3D tumor models for CAR-T-cell therapy optimization

Chimeric antigen receptor (CAR) T-cell therapy accounts for one of the most promising therapeutic advances in cancer immunotherapy. In this form of adoptive cell transfer, T-cells of a patient are engineered to express so-called ‘CARs’, in which the antigen-recognition capacity of antibodies is combined with T-cell activating domains. So far, CAR-T-cell therapy obtained its most impressive results in hematological malignancies resulting in the approval of five CAR-T cell products by the FDA for hematologic indications. However, CAR-T-cell therapy has not mirrored its success in solid tumors. The poor efficacy of CAR-T-cell therapy in solid tumors has, in part, been attributed to the lack of understanding in how CAR-T-cells function in a solid tumor microenvironment. Classical validation methods rely on the use of specificity and functionality assays in 2D models against adherent target cells or target cells in suspension. Yet, by using these models, observations made in vitro may differ greatly to an in vivo situation where tumors are engrafted in 3D structures. We developed a more relevant and translational 3D tumor model using eGFP+ target cells. This allows us to couple 3D tumor cell killing by CAR-T-cells to live-cell imaging, providing an efficient quantification of target cell death. As proof- of-concept, we used a 3D model of eGFP+ glioblastoma cells and CAR-T-cells targeting a pan-cancer antigen. This 3D glioblastoma model allowed us to show that classical scFv-based CAR-T-cell therapy of glioblastoma cells can be improved by nanoCAR-T-cells. Furthermore, combining nanoCAR-T-cell therapy with a genetic approach of nanobody-based anti-PD-L1 immune checkpoint blockade further increased the cytotoxicity of the nanoCAR-T-cell therapy.
03:253 years ago
VHP4Safety project
Projects and initiatives
HealthToxicologyIn vitroIn silico

VHP4Safety project

The safety testing of chemicals and pharmaceuticals traditionally relies on animal studies. However, these raise ethical concerns and often fail to accurately predict human responses. New scientific developments offer opportunities to build a Virtual Human Platform (VHP) for safety assessment, a platform that enables assessment based solely on human physiology and biology, integrating data from in vitro and in silico models. This video explains how we are developing the VHP through an interdisciplinary approach. Read the paper in the videolink or visit or VHP4Safety (https://vhp4safety.nl/) for more information.
03:163 months ago
How do we use human data in risk assessment
Expert interviews
Toxicology

How do we use human data in risk assessment

In this video, EFSA explains how they do risk assessment and what the role of NAMs can be in this process.
03:318 months ago
Tox 21: A New Way to Evaluate Chemical Safety and Assess Risk
Expert interviews
ToxicologyIn silicoPolicy

Tox 21: A New Way to Evaluate Chemical Safety and Assess Risk

Tox21 is a US federal research collaboration focused on driving the evolution of Toxicology in the 21st Century by developing methods to rapidly and efficiently evaluate the safety of commercial chemicals, pesticides, food additives/contaminants, and medical products. The goals of Tox21 are to (1) identify mechanisms of chemically-induced biological activity; (2) prioritize chemicals for more extensive testing; and (3) develop more relevant and predictive models of in vivo toxicological responses.
06:295 years ago
Liquid marbles for cardiac organoids development
Meetings & conferences
HealthIn vitroAdvanced

Liquid marbles for cardiac organoids development

Advances in three-dimensional (3D) culture techniques have shown several advantages over 2D cultures, especially by more accurately mimicking the in vivo environment. This has led to improved reproducibility and reliability of experimental results, which are important criteria in disease modelling and toxicity testing. Induced pluripotent stem cells (iPSC) provide an unlimited source for the derivation of all cell types of the adult body, including cardiomyocytes. To improve the current culture methods for multicellular cardiac spheroids, such as the hanging drop method, we explored the use of hydrophobic powders. Fumed silica nanoparticles can be used to encapsulate liquid drops, which could serve as a microenvironment for cell cultures. This microbioreactor stimulates cell coalescence and 3D aggregation while providing optimal gas exchange between the interior and the surrounding environment. Moreover, the properties of liquid marble microbioreactors render them ideal for co-culture experiments. This liquid marble technique has been previously explored and optimized for other cell types. Here we describe a protocol that allows for the derivation of functional cardiac mini organoids, consisting of co-cultured cardiomyocytes and cardiac fibroblasts. These cardiospheres can be valuable for modelling cardiac diseases in vitro and assessing cell interactions to decipher disease mechanisms. Lab website: https://www.medicalcellbiologylab.com/ Contact: https://www.researchgate.net/profile/Jeffrey-Aalders RE-place database: https://www.re-place.be/method/liquid-marbles-cost-effective-platform-generate-cardiospheres-co-cultured-cardiomyocytes-and
02:553 years ago
Characterizing pancreatic cancer with omics
Meetings & conferences
HealthIn vitroAdvanced

Characterizing pancreatic cancer with omics

Pancreatic ductal adenocarcinoma (PDAC) is known for its aggressive biology and lethality. Due to a low success rate of current diagnostic and therapeutic approaches in clinic, there is an urgent need for preclinical research studies to investigate the underlying biology of this malignancy. This knowledge is indispensable to facilitate the development and validation of potential new therapeutic compounds. Superior to conventional biomedical research models, the focus of this study is on the development and use of a well-established patient-derived 3D in vivo model, mimicking the tumor as it is present in a human body. The development and characterization of pancreatic cancer derived organoids. This model is extensively analysed using advanced histological methods omics technology to perform tumor subtyping. 15 established PDAC organoid lines and their corresponding parental tumors are validated using immunostainings and DNA hotspot sequencing. This study is the first to show in situ detection of important driver mutations of pancreatic cancer, like KrasG12D, both in parental tumor and organoids. Additionally, specific culture conditions are defined to develop subtype-specific organoids which are validated using multiplex RNA in situ hybridization and transcriptomics. We are proud to collaborate in a fruitful international project, aiming to set-up a pre-clinical screening platform for pancreatic cancer based on patient-derived organoids -and xenografts. Altogether, spatial-omics in depth analysis of both models will demonstrate (1) high resemblance to parental tissue and (2) subtype-specific signatures associated with type of model. Ultimately, the screening platform can be used by pharmaceutical companies to facilitate oncological drug testing in a subtype specific way. Publications Ilse Rooman's lab: https://pubmed.ncbi.nlm.nih.gov/34330784/ https://pubmed.ncbi.nlm.nih.gov/31161208/
03:283 years ago
SCREENED: developing 3D thyroid models
Projects and initiatives
HealthIn vitroOrgan-on-Chip

SCREENED: developing 3D thyroid models

The European collaborative project SCREENED aims to develop three-dimensional (3D) cell-based in vitro tests to better characterize the effects of endocrine disruptors (EDs) on thyroid gland function. This method will overcome the limitations of existing tests, being more sensitive at low doses of exposure to chemicals, and enabling the prediction of their toxicity on human health in a sex-specific manner. The ambition of the SCREENED project is that these new 3D in vitro tests, as well as the increased knowledge about adverse reactions after exposure to EDs, will be used for regulatory purposes, ultimately to improve human health.
02:212 years ago
The Beyond Animal Testing Index
Projects and initiatives

The Beyond Animal Testing Index

The Beyond Animal Testing Index (BATI) was designed after the Access to Medicine Index with the aim to be a transparent, objective and independent benchmark that provide public research organisations and their stakeholders insight in what efforts and contributions they make in the transition to animal free innovation and to provide organisations incentive to learn from and inspire each other with regard to the implementation of research practices without the use of animals for the benefit of science.
02:002 years ago