Popular

An iPSC-derived blood-brain barrier to model neurodegeneration
Innovation examples
HealthIn vitroOrgan-on-Chip

An iPSC-derived blood-brain barrier to model neurodegeneration

The blood-brain barrier is a layer of cells that protects our brain from harmful compounds. However, due to this tight barrier, many drugs to treat neurological diseases cannot enter the brain either. There are currently no good models to test these types of drugs. Henrique Nogueira Pinto is a PhD candidate at the Vrije Universiteit in Amsterdam. He is developing a blood-brain barrier model coupled to mini-brains. With this model, he aims to more reliably test how drugs can be transported over the blood-brain barrier and what their effect on the brain is. Click on the info button for the full version of the video. Click here (https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-022-00316-0#Sec3) for a review of the current status of in vitro models for the blood-brain barrier.
01:0514 months ago
TPI.tv: improving science through animal-free innovations and research
TPI.tv videos
InnovationPolicyBeginner

TPI.tv: improving science through animal-free innovations and research

Introducing TPI.tv : a video platform by experts striving to improve science through animal-free innovations and research.
01:265 years ago
Zebrafish in toxicity testing
Innovation examples
HealthToxicology

Zebrafish in toxicity testing

Zebrafish are increasingly recognised as a useful model for toxicity testing of chemical substances. Testing strategies are becoming more based on mechanisms of toxicity structured in adverse outcome pathways describing the chain of events leading to toxicity or disease. Using a battery of dedicated in vitro and in silico assays, insight can be gained in how exposure leads to disease. For certain diseases it is known that toxicity relies on the interaction between different organs and cell types, which requires research on whole organisms in addition to simple in vitro models. The zebrafish is considered a valuable whole organism model in a mechanism-based testing strategy. At RIVM, the zebrafish embryo model is used for testing the effect of chemical substances on several adverse outcomes and diseases. For more information see: https://ehp.niehs.nih.gov/doi/10.1289/EHP9888; https://doi.org/10.3390/ijerph18136717; www.linkedin.com/in/harm-heusinkveld
03:013 years ago
We all want a safer world for humanity, animals and the environment: Transition Animal-free Innovation
Projects and initiatives
HealthInnovationPolicyBeginner

We all want a safer world for humanity, animals and the environment: Transition Animal-free Innovation

Why is the transition to animal-free research so important? What are animal-free models? How does TPI (Transition Animal-Free Innovation) encourage their development and use? And who are we working with to make this happen? We explain this in our animation. More and more animal-free tests and research methods are becoming available, but not all research questions or safety tests can be answered in this way yet. In addition, the validation, qualification and acceptance of non-animal innovations still lags behind. Therefore, the Dutch Ministry of Agriculture, Nature and Food Quality (LNV) stimulates the development and application of animal-free innovations. This is done with the partner programme Transition Animal-free Innovation (TPI).
02:4823 months ago
Cartilage-on-a-chip for studying joint degenerative diseases
Innovation examples
ToxicologyIn vitroOrgan-on-Chip

Cartilage-on-a-chip for studying joint degenerative diseases

Carlo Alberto Paggi is currently a PhD candidate at the University of Twente in the research group of Prof. Marcel Karperien and Prof. Séverine Le Gac. Karperien’s lab focus on the biological aspects of osteoarthritic research while Le Gac’s specialize in organ-on-chip development. The project of Carlo Alberto is developing a joint-on-chip platform to create a reliable in vitro model to study disease progression in osteo- or rheumatoid arthritis. The model combines different organ-on-chips aimed at replicating each a tissue around the joint such as cartilage, bone and ligaments. This new technology focuses on better reproducing human models and at substituting the use of animal models for drug research. If you want to know something more about the project and the groups, you can follow the link in the video. Carlo Paggi was nominated for the Hugo van Poelgeest prize for his research on a cartilage-on-a-chip model to study joint degenerative diseases Karperien’s lab of Developmental Bioengineering: https://www.utwente.nl/en/tnw/dbe/ Le Gac’s lab of Applied Microfluidics for BioEngineering Research: http://www.severinelegac.com/ Linkedin: https://www.linkedin.com/in/carlo-alberto-paggi-76500b135/
01:584 years ago
Assessing respiratory toxicity using in vitro models
Innovation examples
HealthToxicologyIn vitro

Assessing respiratory toxicity using in vitro models

The airways form a barrier for inhaled compounds, however, such compounds may cause local effects in the airways or may lead to lung diseases, such as fibrosis or COPD. Cell models of the respiratory tract, cultured at the air-liquid-interface (ALI) are a relevant model to assess the effects of inhaled compounds on the airways. Such models allow human relevant exposure, which is via the air, and assessment of effects on the epithelial cell layer. At RIVM we use air-liquid-interface cultured cell models and expose these to airborne compounds to assess the effects of agents such as nanomaterials, air pollutants or compounds from cigarette smoke. By using a mechanism-based approach to assess the effects of these compounds we invest in animal-free alternatives that better predict adverse effects in humans.
02:244 years ago
Unified organoid system for modeling heart and kidney interaction on-a-chip
Innovation examples
In vitroOrgan-on-Chip

Unified organoid system for modeling heart and kidney interaction on-a-chip

Beatrice Gabbin is a PhD candidate at the Anatomy and Embryology Department of the Leiden University Medical Center. Her project is shared with the Nephrology Department and focusses on the study of the cardiorenal axis in vitro. Both heart and kidneys have vital functions in the human body and reciprocally influence each other’s behavior: pathological changes in one can damage the other. There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic crosstalk. The aim of the project is therefore to develop a microfluidic system which can be used to study heart and kidney interaction in vitro. For this purpose, cardiac microtissues and kidney organoids derived from human induced pluripotent stem cells are generated and loaded onto a 3D perfusion chip for their dynamic co-culture. This system enables the study the cardiac and kidney interaction with a high level of control. The validation of a unified organoid system will enable the investigation of diseases involving the two organs and their potential treatments. Read more via the link in the video and https://doi.org/10.1016/j.mtbio.2023.100818.
01:3621 months ago
Predictive computer models for protein binding
Innovation examples
HealthToxicologyIn silico

Predictive computer models for protein binding

In this video Linde Schoenmaker (Leiden University) explains how she and her colleagues are making computer models to predict the safety of new chemicals within the VHP4Safety project.
01:4713 months ago
Erwin Roggen, ToxGen Solutions: Applying animal free testing approaches
Expert interviews
HealthToxicologyIn vitro

Erwin Roggen, ToxGen Solutions: Applying animal free testing approaches

Erwin Roggen explains his role as pioneer in the development of technologies for animal-free application. His product, ToxGenSolutions, provides test methods required for modern testing and assessment of compounds and products. It builds on a virtual generic platform of leading test and technology developers providing novel technologies addressing key events in adverse outcome pathways.
01:076 years ago
Kirsten Baken, VITO: Human biomonitoring
Expert interviews
HealthToxicology

Kirsten Baken, VITO: Human biomonitoring

Kirsten Baken discusses biomonitoring as part of the HBM4EU project (https://www.hbm4eu.eu). Human biomonitoring is an important component for a new way of doing risk assessment, based on human data. Human-based NAMs can also be informative for human biomonitoring. An example of the use of human biomarkers can be found here (https://www.sciencedirect.com/science/article/pii/S0013935119302658).
01:276 years ago
Monique Janssens: Why we need the Transition towards Animal-free Innovations
Expert interviews
HelpathonsPolicy

Monique Janssens: Why we need the Transition towards Animal-free Innovations

Why is there a Transition towards Animal-free Innovations, while we have the 3Rs, including Replacement? Well, there is a difference. Animal experiments should no longer be the golden standard of reference. We should not ask: Is this animal-free method good enough to replace animal experiments? But: What is the research question, and how do I get the best answer, preferably without animals? I know that many researchers are doing this already. But we can do even more! It’s also about involving the full chain of parties, including patients, financers, legislators and companies. That is why the transition movement works with interdisciplinary networks and Helpathons. The transition helps to innovate, to accelerate and to implement. At the same time, there is no need to throw the 3Rs overboard. Actually, we owe applying them to the lab animals of today. But by innovating we can develop even more new practices in research and education that bring about better results for science in less time and often with less costs. Without using animals.
02:374 years ago
A hybrid in silico-in vitro cardiorespiratory simulator for medical device testing
Meetings & conferences
HealthIn vitroIn silicoAdvanced

A hybrid in silico-in vitro cardiorespiratory simulator for medical device testing

Cardiovascular medical devices (CMDs) (e.g. artificial hearts, ventricular assist devices, ECMO, heart valves) support the cardiac and/or the respiratory function of patients. Large challenges are encountered when assessing CMDs interaction with the human body and the effects on the heart and vessels. Especially CMDs with new designs require an extensive evaluation concerning their effectiveness and safety under different pathophysiological conditions. We propose a high fidelity cardiorespiratory simulator for the testing of the hemodynamic performance of CMDs. The proposed simulator merges the flexibility of the in silico system with a hydraulic interface to test CMDs. As such, the simulator embeds a high fidelity cardiorespiratory model, allowing the reproduction of pathologies at both cardiac and respiratory level. The simulator works as a test bench for the assessment of CMDs, from prototype stage to pre-clinical stage. Thanks to its flexibility and high-fidelity, the simulator helps reducing animal testing and provides insights on how to improve CMD design to better suit different patient’s needs. Contact: https://www.kuleuven.be/wieiswie/en/person/00098489 RE-place database: https://www.re-place.be/method/cardiovascular-modelling-medical-device-testing
03:114 years ago