Popular

TPI.tv videos
Beginner
Pro tips for making a video about your research
Need some pro-tips to make your next video on animal-free innovations? Aniek and Victoria got some for you! In this video, they share why you should want to make a video about your research, tips about the content and format of an attractive video, and how to best share your video.

Innovation examples
HealthToxicology
Zebrafish in toxicity testing
Zebrafish are increasingly recognised as a useful model for toxicity testing of chemical substances. Testing strategies are becoming more based on mechanisms of toxicity structured in adverse outcome pathways describing the chain of events leading to toxicity or disease. Using a battery of dedicated in vitro and in silico assays, insight can be gained in how exposure leads to disease. For certain diseases it is known that toxicity relies on the interaction between different organs and cell types, which requires research on whole organisms in addition to simple in vitro models. The zebrafish is considered a valuable whole organism model in a mechanism-based testing strategy. At RIVM, the zebrafish embryo model is used for testing the effect of chemical substances on several adverse outcomes and diseases.
For more information see: https://ehp.niehs.nih.gov/doi/10.1289/EHP9888; https://doi.org/10.3390/ijerph18136717; www.linkedin.com/in/harm-heusinkveld

Innovation examples
HealthToxicologyIn vitro
Thyroid Hormone & Brain Development: animal-free models for human safety assessment
The environment can have a significant impact on a child's health even before birth. Brain development begins in the first trimester and continues until the age of 25, with thyroid hormone playing a critical role. During early pregnancy, the fetus depends on the mother's thyroid hormone, and a disruption in the thyroid hormone balance can lead to cognitive and motor impairments in the child. As part of the VHP4Safety project, we are developing in vitro tests to measure the developmental neurotoxic effects caused by disturbances thyroid hormone concentrations. Current testing guidelines do not always include testing for neurodevelopmental effects, highlighting the need for new non-animal methods. At the Erasmus Medical Center, human cell lines representing brain cell types are cultured to study the effect of chemicals on the thyroid hormone balance. RIVM uses human stem cells to create neuron-astrocyte networks that mimic brain development. By combining these different assays and models, we are creating a comprehensive human-based testing strategy to assess developmental neurotoxicity. These advances are a critical step toward eliminating animal testing while protecting the health and environment of future generations.

Innovation examples
HealthToxicologyIn silico
Predictive computer models for protein binding
In this video Linde Schoenmaker (Leiden University) explains how she and her colleagues are making computer models to predict the safety of new chemicals within the VHP4Safety project.

Innovation examples
EducationInnovation
Avatar Zoo - teaching animal anatomy using virtual reality
Animals are essential to train the next generation of scientists understand diseases and develop treatments for humans as well as animals. Therefore, animals are used for educational purposes. Technologies such as Virtual Reality and Augmented Reality can be employed to reduce the number of animals in the future. Prof. Dr. Daniela Salvatori is working on the development of 'Avatar Zoo' together with UMCU and IT. Live animals are replaced by holographic 3D in this flexible platform. With these holograms one is able to study the anatomical, physiological and pathological systems and processes of all kinds of animals.
Avatar Zoo won the Venture Challenge 2021 for the development of virtual reality models that can be used for anatomy classes and practical training.

Innovation examples
ToxicologyInnovationIn vitro
Human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment
Anke Tukker was a PhD candidate in the Neurotoxicology Research group of Dr. Remco Westerink at the Institute for Risk Assessment Sciences at Utrecht University. Dr Westerink’s research group investigates the mechanisms of action of toxic substances on a cellular and molecular level using in vitro systems. Anke's project aimed to develop a human induced pluripotent stem cell (hiPSC)-derived neuronal model for in vitro neurotoxicity screening and seizure liability assessment. Using micro-electrode arrays (MEAs), she showed that these models mimic in vivo neuronal network activity. When these hiPSC-derived neurons are mixed with hiPSC-derived astrocytes, they can be used for in vitro seizure liability assessment. Comparing these data with data obtained from the current used model of ex vivo rodent cortical cultures, she found that these human cells outperform the rodent model. Here research thus contributes towards animal-free neurotoxicity testing.
Anke Tukker has won the public vote of the Hugo van Poelgeest prize 2020 for her research on human neuronal cell models for in vitro neurotoxicity screening and seizure liability assessment.
Neurotoxicology Research Group, IRAS, Utrecht University: https://ntx.iras.uu.nl/NTXatIras

Innovation examples
HealthToxicologyIn vitro
Understanding implant safety in vitro
Each year, millions of people receive an implant. The function of damaged tissues or organs is successfully restored in most people, however, some do develop complications. The safety of medical devices is indicated for legislation using international regulations. In the relevant standards, tests mainly focus on the chemical nature of the implants using classical toxicological end-points. However, more recently we have learned that the mechanical forces from an implant on the host-tissue can have significant effects on the host-response as well. At RIVM we want to develop an animal-free model that better resembles the interface between the implant and the host-tissue, and by updating the testing strategies contribute to implant safety on the long term.

Innovation examples
HealthToxicology
New approaches for cancer hazard assessment
Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For cancer hazard assessment, the long-term rodent carcinogenicity study is the current mainstay for the detection of nongenotoxic carcinogens. However, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight of evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for chemicals. At RIVM, we are working on this alternative approach for cancer hazard assessment, which makes optimal use of innovative (computational) tools and be less animal demanding.
For more information, click on the link in the video or read on here (https://doi.org/10.1080/10408444.2020.1841732) and here (https://doi.org/10.1080/10408444.2018.1458818).
Contact the expert (https://nl.linkedin.com/in/mirjamluijten)

TPI.tv videos
Five simple tricks for making your own video for TPI.tv
This video shows you how to make a video yourself. It's really not that difficult! See also the submission page (https://tpi.tv/submit-a-video) for additional information.

Expert interviews
HelpathonsPolicy
Monique Janssens: Why we need the Transition towards Animal-free Innovations
Why is there a Transition towards Animal-free Innovations, while we have the 3Rs, including Replacement? Well, there is a difference. Animal experiments should no longer be the golden standard of reference. We should not ask: Is this animal-free method good enough to replace animal experiments? But: What is the research question, and how do I get the best answer, preferably without animals? I know that many researchers are doing this already. But we can do even more! It’s also about involving the full chain of parties, including patients, financers, legislators and companies. That is why the transition movement works with interdisciplinary networks and Helpathons. The transition helps to innovate, to accelerate and to implement. At the same time, there is no need to throw the 3Rs overboard. Actually, we owe applying them to the lab animals of today. But by innovating we can develop even more new practices in research and education that bring about better results for science in less time and often with less costs. Without using animals.

Innovation examples
ToxicologyIn vitro
Stem cell differentiation assays for animal-free developmental neurotoxicity assessment
Victoria de Leeuw was a PhD candidate in the research group of prof. dr. Aldert Piersma at the RIVM and Institute for Risk Assessment Sciences at Utrecht University. Piersma's lab studies the effects of compounds on development of the embryo during pregnancy with, among other techniques, stem cell cultures. The project of Victoria was aimed to differentiate embryonic stem cells of mouse and human origin into neuronal and glial cells, which could mimic parts of differentiation as seen during embryonic brain development. These models were able to show some of the known toxic mechanisms induced by these compounds, congruent with what they we hypothesised to mimic. This provides mechanistic information into how chemical compounds can be toxic to brain development. Therefore, these two stem cell assays make a useful contribution to the animal-free assessment of developmental neurotoxicity potential of compounds.
Victoria is nominated for the Hugo van Poelgeest prize 2022 for excellent research to replace animal testing.

Questions
HelpathonsHealth
Helpathon #11 – Can you help Francesca?
Francesca Stillitano (UMC Utrecht) is a geneticist and an Assistant Professor at the Department of Cardiology. Francesca is currently working with mice models and with human tissue-based in vitro models to develop and test new gene therapies for a rare cardiomyopathy. Can you help Francesca with developing gene therapies for curing inherited cardiomyopathies without the use of animal models? More information can be found here (https://www.helpathonhotel.org/coming-up).