Optimizing CAR-T-cell therapy using 3D tumor models and real-time cell imaging

03:2516 months ago

Chimeric antigen receptor (CAR) T-cell therapy accounts for one of the most promising therapeutic advances in cancer immunotherapy. In this form of adoptive cell transfer, T-cells of a patient are engineered to express so-called ‘CARs’, in which the antigen-recognition capacity of antibodies is combined with T-cell activating domains. So far, CAR-T-cell therapy obtained its most impressive results in hematological malignancies resulting in the approval of five CAR-T cell products by the FDA for hematologic indications. However, CAR-T-cell therapy has not mirrored its success in solid tumors. The poor efficacy of CAR-T-cell therapy in solid tumors has, in part, been attributed to the lack of understanding in how CAR-T-cells function in a solid tumor microenvironment. Classical validation methods rely on the use of specificity and functionality assays in 2D models against adherent target cells or target cells in suspension. Yet, by using these models, observations made in vitro may differ greatly to an in vivo situation where tumors are engrafted in 3D structures. We developed a more relevant and translational 3D tumor model using eGFP+ target cells. This allows us to couple 3D tumor cell killing by CAR-T-cells to live-cell imaging, providing an efficient quantification of target cell death. As proof- of-concept, we used a 3D model of eGFP+ glioblastoma cells and CAR-T-cells targeting a pan-cancer antigen. This 3D glioblastoma model allowed us to show that classical scFv-based CAR-T-cell therapy of glioblastoma cells can be improved by nanoCAR-T-cells. Furthermore, combining nanoCAR-T-cell therapy with a genetic approach of nanobody-based anti-PD-L1 immune checkpoint blockade further increased the cytotoxicity of the nanoCAR-T-cell therapy.

Related

 Helpathon #8 – Can you help Margot?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Margot?

Margot Beukers is the LymphChip program manager. Can you help Margot bring the field forward by sharing your experience with animal-free alternatives for Foetal Calf Serum and Matrigel? Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:032 months ago
Helpathon #8 – Can you help Jasper?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Jasper?

Jasper Koning is doing research on skin diseases. He believes it must be possible to find an alternative to Foetal Calf Serum to grow immune cells. Can you help him find alternatives to Foetal Calf Serum so he can build human models animal free? Jasper is especially looking for researchers with practical experience in applying alternatives. He did some trials himself with mixed results. Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:162 months ago
Helpathon #8 – Can you help Germaine?
Meeting videos
HealthInnovationIn vitro

Helpathon #8 – Can you help Germaine?

Germaine Aalderink is investigating the uptake of lipids travelling from the gut into the lymphatic system and further explore the merits of this alternative drug intake strategy. Can you help Germaine make an intestinal and lymphatic model with an alternative for Matrigel that is animal-free? She wants to know what components are essential in each phase of intestinal development and is interested in both the positive and negative experiences of other researchers with the use of alternatives for Matrigel. Click on the link in the video to sign up and read more information on this Helpathon on the website (https://www.helpathonhotel.org/coming-up).
01:212 months ago
Using skin and mucosa models to replace animal testing
Innovation examples
HealthInnovationIn vitro

Using skin and mucosa models to replace animal testing

The skin and mucosa are important tissues that differ between species in health and disease. The group of Sue Gibbs works on the development of advanced in vitro models that mimic these two tissues, specialising in immunity models and organ-on-a-chip technologies. They use skin models to study for example melanoma, skin allergies, eczema, burns and healing wounds. Dental models are used for the safety of materials used in dentistry, for example to test the quality of the implant and false tooth when it comes to attaching to the soft tissue. Their ambition is to expand into the field of multi-organ technology to make even more relevant models for the human skin and mucosa. Click on the link in the video to watch more or read the interview with Sue he[https://vu.nl/en/research/more-about/using-skin-and-mucosa-models-to-replace-animal-testing]re.
00:302 months ago