A 3D melanoma for the development of skin cancer treatment

03:192 years ago

The developing process of a new drug, from first testing to regulatory approval and ultimately to market is a long, costly, and risky path. Noteworthy is the fact that almost 95% of the drugs that go into human trials fail. According to the National Institutes of Health (NIH), 80 to 90% of drug research projects fail before they ever get tested in humans. The value of preclinical research, mainly conducted in animal model experiments for predicting the effectiveness of therapies and treatment strategies in human trials, has remained controversial. Only 6% of the animal studies are successfully translated into the human response. Breaking down failure rates by therapeutic area, oncology disorders account for 30% of all failures. The absence of human-relevant models with receptors, proteins, and drug interactions in the in situ microenvironment leaves a gap in the scientific discovery process of new therapies. In this context, the present work presents the development of a sophisticated in vitro skin model platform focus on boosting melanoma treatment. The results showed a physiological microenvironment of human skin with epidermal differentiation and development of stratified layers (basement membrane, stratum spinosum, stratum granulosum, and stratum corneum). Furthermore, it was observed the pathophysiological microenvironment of the melanoma with invasion or migration through the basement membrane into the dermis and no epidermal differentiation. Vemurafenib treatment, the gold standard which targets BRAF mutations, showed a decrease in proliferation and invasion of melanoma tumors, with an increase in epidermis keratinization. Melanoma incidence continues to increase year-on-year and is currently responsible for >80% of skin cancer deaths. It is the most common cutaneous form and is known to have the highest mutational load of all cancers. Nowadays, patients with advanced melanoma BRAFV600E mutation can benefit from monotherapies or targeted therapies. Although the initial response rate is effective, disease progression and tumor chemoresistance rapidly occur in the majority of patients. Therefore, the treatment of melanoma remains a challenge, and despite the advances, there is still an urgent need to identify new therapeutic strategies. 3D Model Melanoma is considered one important tool for studying the evolution of the pathology, as well as evaluating the effectiveness of new therapeutic approaches.

Related

EURL ECVAM
Projects and initiatives
HealthInnovationPolicy

EURL ECVAM

The EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) promotes and facilitates the use of non-animal methods in testing and research. It validates, disseminates and shares knowledge on the 3Rs (Replacement, Reduction and Refinement of animal experiments). In this video, Raffaella Corvi explains what EURL ECVAM does in the field of safety testing of chemicals while reducing laboratory animal testing. Watch the accessible version of the video here (https://audiovisual.ec.europa.eu/en/video/I-230374). ©European Union, 2021
02:335 months ago
Five simple tricks for making your own video for TPI.tv
TPI.tv videos

Five simple tricks for making your own video for TPI.tv

This video shows you how to make a video yourself. It's really not that difficult! See also the submission page (https://tpi.tv/submit-a-video) for additional information.
01:234 years ago
CONNECT
Projects and initiatives
HealthIn vitro

CONNECT

Many people worldwide suffer from brain diseases. These diseases are often hard or even impossible to treat. One of the reasons for this that potentially beneficial drugs cannot pass through the blood-brain barrier. The CONNECT project aims to develop a blood-brain barrier model and connect this to a brain model, all derived from cells. With this advanced in vitro test system, researchers aim to be able to study how drugs can be transferred more effectively and safely over the blood-brain barrier in an animal-free and human-relevant manner.
03:1414 days ago
 Helpathon #11 – Can you help Terry?
Questions
HelpathonsHealth

Helpathon #11 – Can you help Terry?

Terry Vrijenhoek (UMC Utrecht) is a geneticist and explores the societal impact of gene therapy. In this Helpathon the focus is on Alzheimers, for which there is no cure but there is a promising RNA-based therapy in the pipeline. Can you help Terry with designing scenarios for responsible development for gene therapy for Alzheimer disease in terms of benefits, risks, budgets and animal models? More information can be found here (https://www.helpathonhotel.org/coming-up).
01:142 months ago