Unified organoid system for modeling heart and kidney interaction on-a-chip

01:368 months ago

Beatrice Gabbin is a PhD candidate at the Anatomy and Embryology Department of the Leiden University Medical Center. Her project is shared with the Nephrology Department and focusses on the study of the cardiorenal axis in vitro. Both heart and kidneys have vital functions in the human body and reciprocally influence each other’s behavior: pathological changes in one can damage the other. There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic crosstalk. The aim of the project is therefore to develop a microfluidic system which can be used to study heart and kidney interaction in vitro. For this purpose, cardiac microtissues and kidney organoids derived from human induced pluripotent stem cells are generated and loaded onto a 3D perfusion chip for their dynamic co-culture. This system enables the study the cardiac and kidney interaction with a high level of control. The validation of a unified organoid system will enable the investigation of diseases involving the two organs and their potential treatments. Read more via the link in the video and https://doi.org/10.1016/j.mtbio.2023.100818.

Related

TPI.tv: improving science through animal-free innovations and research
TPI.tv videos
InnovationPolicyBeginner

TPI.tv: improving science through animal-free innovations and research

Introducing TPI.tv : a video platform by experts striving to improve science through animal-free innovations and research.
01:263 years ago
Five simple tricks for making your own video for TPI.tv
TPI.tv videos

Five simple tricks for making your own video for TPI.tv

This video shows you how to make a video yourself. It's really not that difficult! See also the submission page (https://tpi.tv/submit-a-video) for additional information.
01:234 years ago
Predictive computer models for protein binding
Innovation examples
HealthToxicologyIn silico

Predictive computer models for protein binding

In this video Linde Schoenmaker (Leiden University) explains how she and her colleagues are making computer models to predict the safety of new chemicals within the VHP4Safety project.
01:4715 days ago
Thyroid Hormone & Brain Development: animal-free models for human safety assessment
Innovation examples
HealthToxicologyIn vitro

Thyroid Hormone & Brain Development: animal-free models for human safety assessment

The environment can have a significant impact on a child's health even before birth. Brain development begins in the first trimester and continues until the age of 25, with thyroid hormone playing a critical role. During early pregnancy, the fetus depends on the mother's thyroid hormone, and a disruption in the thyroid hormone balance can lead to cognitive and motor impairments in the child. As part of the VHP4Safety project, we are developing in vitro tests to measure the developmental neurotoxic effects caused by disturbances thyroid hormone concentrations. Current testing guidelines do not always include testing for neurodevelopmental effects, highlighting the need for new non-animal methods. At the Erasmus Medical Center, human cell lines representing brain cell types are cultured to study the effect of chemicals on the thyroid hormone balance. RIVM uses human stem cells to create neuron-astrocyte networks that mimic brain development. By combining these different assays and models, we are creating a comprehensive human-based testing strategy to assess developmental neurotoxicity. These advances are a critical step toward eliminating animal testing while protecting the health and environment of future generations.
02:5331 days ago